Lecture 5 January 2019

Electrons in Atoms: Energy, Magnetism; Term Symbols, Z_{eff} as Determinant of Ionization Energies, and Other Properties

Electrons have Energy; and they have spins. Gouy Balance for Magnetic Susceptibility

Fig. 20.21 Schematic representation of a Gouy balance.

Three types of Magnetic Behavior

Paramagnetism: atoms, molecules, and solids with unpaired electrons are attracted in a magnetic field

Diamagnetic: substances with no unpaired electrons which are weakly repelled in a magnetic field

Ferro-magnetism: the unpaired electons are aligned with their neighbors even in the absence of a magnetic field

Magnetic domains: the groups of mutually aligned spins in a ferromagnetic substance

First approach to both energy and magnetism?

Electron Assignments: Identify each and every quantum number for each and every electron: n l m_e m_s

Electrons Characterized by

- a) <u>Principal</u> energy level, **n**
- b) <u>Orbital</u> or angular momentum, l = # of angular nodes
- c) Z_{eff}

In the presence of a magnetic field of ℓ is oriented and composed of m_{ℓ} components. **d) Spin-spin and spin-orbital coupling**

*n*d vs. (n + 1)s in the Transition Metals

- K
 Ca
 Sc
 Ti
 V
 Cr
 Mn
 Fe
 Co
 Ni
 Cu
 Zn

 4s
 1
 2
 2
 2
 1
 2
 2
 2
 1
 2

 3d
 1
 2
 3
 5
 5
 6
 7
 8
 10
 10
- Rb
 Sr
 Y
 Zr
 Nb
 Mo
 Tc
 Ru
 Rh
 Pd
 Ag
 Cd

 5s
 1
 2
 2
 1
 1
 1
 1
 0
 1
 2

 4d
 1
 2
 4
 5
 6
 7
 8
 10
 10
 10
- CsBaLaHfTaWReOsIrPtAuHg6s122222220125d11234567101010

Box Diagrams—help with magnetism

Figure 1.4 The possible sets of quantum numbers for n = 1 and n = 2.

Box Diagrams

Figure 1.5 The possible sets of quantum numbers for n = 3.

Ground State vs. Excited State Configurations

Spin:
$$S = \Sigma m_s$$

= total spin angular momentum
 $2S + 1$ (called spin "multiplicity")
L = total orbital angular momentum = = Σ

 J_z

J = L + S

S

⁺J_×

 m_{l}

J = L

Term Symbols for Ground State Electronic Configurations

- <u>Pauli Exclusion Principle</u> => Assignments to n and to l quantum numbers. But there are other possibilities within assignment
- <u>Hund's Rule</u>: Describes ground state only.
- Ground states will have
- 1st * <u>Maximum</u> value of <u>S</u>
- 2nd * <u>Maximum</u> value of L within that <u>S</u>

Russell Saunders Coupling (L-S Coupling) for Ground States

Configuration => Term Symbol $\Sigma m_1 = max. M_1 \text{ or } L$ 2S+1 2 S + 1 ≈ Spin $\Sigma m_s = M_s \text{ or } S$ **Multiplicity** S 2 S + 1 # unpaired e⁻ L State 1/2 \Rightarrow doublet 2 0 1 \Rightarrow S 2 3 1 \Rightarrow triplet 1 $\Rightarrow \mathbf{P}$ 3 3/2 2 4 \Rightarrow quartet \Rightarrow D 4 2 5 3 \Rightarrow pentet \Rightarrow F 4 ⇒ G etc.

Russell Saunders Coupling: Spin/Orbit Coupling

